

Data from milking robots open up new possibilities of genetic evaluations

Line Hjortø Buch, Kevin Byskov and Anders Fogh

Outline

- O Background and data collection
- O Udder conformation
 - O Teat co-ordinates
- Time usage
 - Fat and protein flow

Other variables

Advantages of data from milking robots

- Repeated measurements of a variety of traits
- **Objective measurements**
- Measured on all cows in milk
- O Measured over more lactations

Data collection from AMS herds

- At present, data from milking robots are collected by four technicians in connection with milk recording
- Data are subsequently transferred to the national cattle database
- For the time being, it is only possible to collect data from Lely's milking robots
- Danish Cattle Federation collaborates with Lely in transferring data in real time – long-term strategy

Primary aim

- Development of EBVs for cows' suitability to use milking robots
- Optimization of existing EBVs for functional traits
- Small examples of both

Data set and choice of model

- All analyses are based on a smaller data set
 - ~11 million observations (~16,000 cows)
 - O 76 herds
- O Data from May '05 to February '11
- We used linear animal models
 One observation per cow

How to handle repeated measurements

- Great many observations
- Average of all measurements from 30 to 240 days in milk
- Presumably more sophisticated methods to utilize the information to the full

7

Udder conformation

- Udder conformation is already included in NTM
 Assessed by classifiers
- 120,000 Danish cows are classified per year
 The majority of the cows are 1st parity cows
- A wish for EBVs based on later parities
- Is it possible to apply information on teat co-ordinates to the genetic evaluation?

Classification

- The classifiers assess 10 linear udder conformation traits
 - Also 7 body and 5 feet and leg traits
- O Trained classifiers
 - O But still subjective assessments

Udder depth

Teat co-ordinates

- Front teat placement
- Rear teat placement
- Distance, front rear
- **Udder** balance
- Udder depth, tip of the teat measuring point

X co-ordinates – Raw data from one cow

Day-to-day variation
 But co-variation

Relatively stable differences between coordinates through the lactation

But co-ordinates change shortly after calving

Heritabilities for udder conformation traits measured in robots or assessed by classifiers

Trait	h ² (S.E.) - Measurements	h ² – Assessments
Front teat placement	0.51 (0.04)	0.20
Rear teat placement	0.28 (0.04)	0.26
Distance, front - rear	0.59 (0.04)	-
Udder balance	0.39 (0.05)	0.17
Udder depth	0.68 (0.04)	0.37

Based on measurements from approximately 5,500 1st parity Holstein cows

O High heritabilities

 High correlations between EBVs based on measurements and assessments

Partial conclusion – Udder conformation

- NAV is about to develop new multi-trait models for conformation traits
- NAV thinks of including teat co-ordinates from robots in the genetic evaluation
- This makes possible genetic evaluations of udder conformation traits in later parities

Time usage

Time usage

Time usage

Milk yield + fat and protein percentages

- Milk yield per milking from robots
- Moving average of milk yield per milking
 7 days moving average for ≤ 30 days in milk
 14 days moving average for > 30 days in milk
- Fat and protein percentages from milk recording

Fat and protein flow in kg per minute

- Fat and protein flow is already included in NTM
 Measured (DK) or assessed by dairy farmers
- Data from milking robots are not yet included in the genetic evaluation
- Is it possible to use information on fat and protein flow from milking robots?

Genetic parameters for flow

- h² for flow from robots and milk recording are high
- h² for assessments and flow from milk recording are very close to previous estimates
- High genetic correlations between the traits

• Heritabilities and genetic correlations (S.E.)

	h²	Assessments	Flow, milk recording
Flow, robots*	0.63 (0.07)	0.91 (0.05)	0.94 (0.03)
Assessments	0.20 (0.02)	-	0.91 (0.02)
Flow, milk recording*	0.41 (0.01)	-	-

Based on measurements from 276,000 1st parity Holstein cows * Based on information on the 1st milk recording after calving

Partial conclusion - Flow

- It is possible to use flow from robots in the genetic evaluation
- Limited effect on the EBVs of the bulls
 There are already many observations
- Cows from AMS herds will be genetically evaluated

Variables related to health, reproduction and feed efficiency

- O Automatic heat detection Heatime
- Rumen activity RuminAct
- Weight
- O Conductivity

Conclusions

- According to the preliminary results it is possible to use:
 - Teat co-ordinates in the genetic evaluation of udder conformation
 - Fat and protein flow in the genetic evaluation of milking speed
- Data from milking robots may provide the opportunity for genetic evaluations of new traits – e.g. traits related to feed efficiency